Physic nut germplasm genetic diversity identified by internal simple sequence repeats (ISSR) markers

  • Stella Maris Nucci Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz
  • Maria Imaculada Zucchi Agência Paulista de Tecnologia dos Agronegócios
  • Glyn Mara Figueira Universidade Estadual de Campinas - UNICAMP
  • Renata Silva-Mann Universidade Federal de Sergipe - UFS
  • José Baldin Pinheiro Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz

Resumo

The physic nut has attracted great interest for their socioeconomic promising vegetable oil production capacity that can be used in biodiesel manufacturing. However, the species is still under a domestication process and many studies are still needed to start a breeding program. In this context, this study aimed to evaluate the genetic diversity in 29 physic nut accessions from two germplasm banks using 14 ISSR markers. Genetic characterization revealed that 86.64% of the genetic variation is present within the groups, whereas 13.36% corresponded to the variation between the groups. The total mean number of alleles per locus was 1.99 and the effective number of alleles corresponded to 1.42. The Bayesian analysis allocated the access into four clusters, showing that the clusters formed showed no relation to the origin of access. The Jaccard similarity index indicated that the extent of similarity between accessions ranged from 0.23 to 0.94. The dendrogram formed the same four access groups as those formed by the Bayesian analysis, and all groups were in agreement in both analyses. The study demonstrated the need and importance of a germplasm collection from several regions and countries in order to preserve the genetic diversity of the species and the development of Euphorbiaceae breeding programs

Downloads

Não há dados estatísticos.

Biografia do Autor

Stella Maris Nucci, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz

Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Caixa Postal 83, CEP 13400-970 Piracicaba, SP, Brazil. 

Maria Imaculada Zucchi, Agência Paulista de Tecnologia dos Agronegócios

Agência Paulista de Tecnologia dos Agronegócios, Pólo APTA Regional Centro Sul, Caixa Postal 28, CEP 13400-970, Piracicaba, SP, Brazil.

Glyn Mara Figueira, Universidade Estadual de Campinas - UNICAMP
Universidade Estadual de Campinas, Centro Pluridisciplinar de Pesquisas Químicas e Biológicas, Caixa-Postal 6171, Paulínia, SP, Brazil.
Renata Silva-Mann, Universidade Federal de Sergipe - UFS
Universidade Federal de Sergipe, Centro de Ciências Biológicas e da Saúde, Departamento de Engenharia Agronômica, Av. Marechal Rondon s/n, CEP 49100-000, São Cristovão, SE, Brazil
José Baldin Pinheiro, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Caixa Postal 83, CEP 13400-970 Piracicaba, SP, Brazil.

Referências

Bajay M, Pinheiro JB, Batista CEA, Nobrega MBM and Zucchi MI (2009) Development and characterization of microsatellite markers for castor Ricinus communis L., an important oleaginous species for biodiesel production. Conservation Genetics Resources 1(1): 237-239.

Basha SD and Sujatha M (2007) Inter and intra-population variability of Jatropha curcas L. characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156: 375-386.

Borman GD, von Maltitz GP, Tiwari S and Scholes MC (2013) Modelling the economic returns to labour for Jatropha cultivation in southern Africa and India at different local fuel prices. Biomass and Bioenergy 59: 70-83.

Bressan EA, Scotton DC, Ferreira RR, Jorge EC, Sebbenn AM, Lee TSG and Figueira A (2012) Development of microsatellite primers for Jatropha curcas (Euphorbiaceae) and transferability to congeners. The American Journal of Botany 99: 237-239.

Coelho ASG (2001) Bood: avaliacao de dendrogramas baseados em estimativas de distancias/similaridades genéticas atraves do procedimento de bootstrap: versao 3.01. Universidade Federal de Goias, Goiania.

De Arruda FP, Beltrao NEDM, De Andrade AP, Pereira WE and Severino LS (2004) Cultivo de pinhao manso (Jatropha curca L.) como alternativa para o semi-arido nordestino. Revista Brasileira de Oleaginosas e Fibrosas 8(1): 789-799.

De Souza ADV, Favaro SP, Itavo LCV and Roscoe R (2009) Caracterizacao quimica de sementes e tortas de pinhão manso, nabo forrageiro e crambe. Pesquisa Agropecuaria Brasileira 44(10): 1328-1335.

Dias LA, Missio RF and Dias DC (2012) Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genetics and Molecular Research 11:2719-2728.

Doyle JJ and Doyle JL (1990) Isolation of plant DNA fresh tissue. Focus 12: 13-15.

Evanno G, Regnaut S and Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 2611-2620.

Excoffier L, Smouse PE and Quatro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 179-101.

FeijaoTeixeira JP (1987) Teor e composicao do oleo de sementes de Jatropha spp. Bragantia 46(1): 151-157.

Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W (ed) Genetic manipulation: impact on man and society. Cambridge University Press, pp. 161-170.

Heller J (1996) Physic nut �?? Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resources Institute, Rome, 66p.

Kanchanaketu T, Sangduen N, Toojinda T and Hongtrakul V (2012) Genetic diversity analysis of Jatropha curcas L. (Euphorbiaceae) based on methylation-sensitive amplification polymorphism. Genetics and Molecular Research 11(2): 944-955.

Lewontin RC (1972) The apportionment of human diversity. Evolutionary Biology 6: 381-398.

Marques DA and Ferrari RA (2008) O papel das novas biotecnologias no melhoramento genetico do pinhao manso. Biologico 70(2): 65-67.

Mavuso C, WuY P, Chen FC, Huang BH and Lin SJ (2016) Genetic diversity analysis of Jatropha curcas L. accessions cultivated in Taiwan using inter simple sequence repeats (ISSR) markers. Agroforestry Systems 90(3): 417-431.

Odong TL, van Heerwaarden J, Jansen J, van Hintum TJL and van Euwijk FA (2011) Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theoretical and Applied Genetics 123: 195-205.

Openshaw K (2000) A review Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy 19: 1-15.

Osorio LRM, Salvador AFT, Jongschaap REE, Perez CAA, Sandoval JEB, Trindade LM et al. (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biology 14 (1): 77.

Pritchard JK, Stephens M and Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Raposo RS, Souza IGB, Veloso MEC, Kobayashi AK, Laviola BG and Diniz FM (2014) Development of novel simple sequence repeat markers from a genomic sequence survey database and their application for diversity assessment in Jatropha curcas germplasm from Guatemala. Genetics and Molecular Research 13(3): 6099-6106.

Ranade SA, Srivastava AP, Rana TS, Srivastava J and Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass and Bioenergy 32(6): 533-540.

Reis MVM, Junior PCD, Campos TO, Diegues IP and Freitas SC (2015) Variabilidade genetica e associacao entre caracteres em germoplasma de pinhao-manso (Jatropha curcas L.). Revista Ciencia Agronomica 46(2): 412-420.

Rohlf FJ (2000) Numerical taxonomy and multivariate analysis system. Version 2.11, Applied Biostatistics, New York.

Schneider S, Roessli D and Excoffier L (2000) Arlequim ver. 2000: a software for population data analysis. University of Geneva, Genetic and Biometry Laboratory, Switzerland.

Shen J, Pinyopusarerk K, Bush D and Chen X (2012) AFLP-based molecular characterization of 63 populations of Jatropha curcas L. grown in provenance trials in China and Vietnam. Biomass and Bioenergy 37: 265-274.

Sigrist MS, Pinheiro JB, Azevedo-Filho JA, Colombo CA, Bajay MM, Lima PF, Camilo FR, Sandhu S, Souza APand Zucchi MI (2010) Development and characterization of microsatellite markers for turmeric Curcuma longa. Plant Breeding 129(5): 570-573.

Suresh R, Raddy S and Yathish KV (2012) Experimental Investigation of Diesel Engine Using Blends of Jatropha Methyl Ester as Alternative Fuel. International Journal of Emerging Technology and Advanced Engineering 2:419-418.

Tatikonda L, Wani SP, Kannan S, Beerelli B, Sreedevi TK, Hoisington DA, Devi P and Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Science 176: 505-513.

Teixeira LC (2005) Potencialidades de oleaginosas para producao de biodiesel. Informe Agropecuario 26(229): 18-27.

Thomas R, Sah NK and Sharma PB (2008) Therapeutic biology of Jatropha curcas: a mini review. Current Pharmaceutical Biotechnology 9(4): 315-324.

Valois ACC (1998) Genetica aplicada a recursos fitogeneticos. UNB, Brasilia, 318p.

Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV and Tuli R (2010) EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genetics & Genomes 7(1): 207-219.

Yeh FC, Yang RC, Boyle TBJ, Ye ZH and Mao JX (2000) POPGENE, the user-friendly shareware for population genetic analysis molecular biology and biotechnology centre. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta.

Wen M, Wang H, Xia Z, Zou M, Lu C and Wang W (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha Curcas L. BMC Research Notes 3: 42.

Wolfe AD, Xiang QY and Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat markers. Molecular Ecology 7: 1107-1125.

Zietkiewicz E, Rafalski A and Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183.

Publicado
2017-11-30
Como Citar
Nucci, S. M., Zucchi, M. I., Figueira, G. M., Silva-Mann, R., & Pinheiro, J. B. (2017). Physic nut germplasm genetic diversity identified by internal simple sequence repeats (ISSR) markers. ASB Journal, 2(2), 48. https://doi.org/10.33158/ASB.2016v2i2p48
Seção
Artigos