Environmental stresses and its implications on breeding of brewing barley

  • Cristian Troyjack Universidade Federal de Pelotas
  • Ivan Ricardo Carvalho Universidade Regional do Noroeste do Estado do Rio Grande do Sul
  • João Roberto Pimentel Universidade Federal de Pelotas
  • Gilberto Troyjack Junior Universidade Federal de Pelotas
  • Vinicius Jardel Szareski Universidade Federal de Pelotas
  • Ítala Thaísa Padilha Dubal Universidade Federal de Pelotas
  • Lanes Beatriz Acosta Jaques Universidade Federal de Pelotas
  • Giordano Gelain Conte Universidade Federal de Pelotas
Keywords: Hordeum vulgare L, hydric restriction, soil flooding, germplasm

Abstract

The barley (Hordeum vulgare L.) is a cereal of extreme economic and social importance, due to its wide use, which varies from human and animal consumption, use in chemical and brewing industries. This specie, as for many other, is widely affected by unfavorable environmental conditions, inducing a state of stress in the plants, which, depends on the specie, duration, severity, development stage, affect structure and genotype. Among the main factors causing stress in plants, the abiotic stress stands out, such as high and low temperatures, hydric restriction or excess, salt excess, mineral toxicity and nutritional shortages. The present study has the purpose of expose, as a review, the effects of unfavorable environmental factors in barley and the role of genetic breeding.

CROSSMARK_Color_horizontal.svg

Downloads

Download data is not yet available.

References

Agarwal, P. K., Gupta, K., Lopato, S., & Agarwal, P. (2017). Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. Journal of Experimental Botany, 68(9), 2135�??2148. https://doi.org/10.1093/jxb/erx118

Amabile, R. F., Capettini, F., & Faleiro, F. G. (2013). BRS Savanna: New six-rowed malting barley cultivar for irrigated crops in the Brazilian Savanna. Crop Breeding and Applied Biotechnology, 13(2), 160�??163. https://doi.org/10.1590/S1984-70332013000200010

Amarante, L. do, Badinelli, D. dos S., Oliveira, M. L., Zenzen, I. L., Badinelli, P. G., & Bernardi, E. (2007). Teores de Clorofilas em Soja Associada Simbioticamente com Diferentes Estirpes de. Revista Brasileira de Biociências, 5(supl 2), 906�??908.

Apse, M. P., & Blumwald, E. (2003). Engineering Salt Tolerance in Plants. Biotechnology and Genetic Engineering Reviews, 20(1), 261�??276. https://doi.org/10.1080/02648725.2003.10648046

Arend, M. C., Pereira, J. O., & Markoski, M. M. (2017). The CRISPR/Cas9 system and the possibility of genomic edition for cardiology. Arquivos Brasileiros de Cardiologia, 108(1), 81�??83. https://doi.org/10.5935/abc.20160200

Badr, A., & El-Shazly, H. (2012). Molecular approaches to origin, ancestry and domestication history of crop plants: Barley and clover as examples. Journal of Genetic Engineering and Biotechnology, 10(1), 1�??12. https://doi.org/10.1016/j.jgeb.2011.08.002

Bahieldin, A., Mahfouz, H. T., Eissa, H. F., Saleh, O. M., Ramadan, A. M., Ahmed, I. A., �?� Madkour, M. A. (2005). Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum, 123(4), 421�??427. https://doi.org/10.1111/j.1399-3054.2005.00470.x

Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313�??339. https://doi.org/10.1146/annurev.arplant.59.032607.092752

Bassett, C. L. (2013). Water Use and Drought Response in Cultivated and Wild Apples. Abiotic Stress - Plant Responses and Applications in Agriculture. https://doi.org/10.5772/55537

Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., & Ceccarelli, S. (2003). QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross �??Arta�?� x H. spontaneum 41-1. Theoretical and Applied Genetics, 107(7), 1215�??1225. https://doi.org/10.1007/s00122-003-1357-2

Begg, J. E., & Turner, N. C. (1975). Crop water déficits. Advance Agronomy, 27: 1-75. https://doi.org/10.1016/S0065-2113(08)60555-6

Bellucci, E., Bitocchi, E., Rau, D., Nanni, L., Ferradini, N., Giardini, A., �?� Papa, R. (2013). Population structure of barley landrace populations and gene-flow with modern varieties. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0083891

Bischoff, J., & Werner, H. (1999). Salt Salinity Tolerance of Common Agricultural Crops in South Dakota : Forages and Grasses / Grains and Field Crops Forages and Grasses / Grains and Field Crops. Fact Sheets . Paper 83. Retrieved from http://openprairie.sdstate.edu/extension_fact/83

Blum, A. (2011). Plant breeding for water-limited environments. Plant Breeding for Water-Limited Environments. https://doi.org/10.1007/978-1-4419-7491-4

Boom, A., Serra-Majem, L., Ribas, L., Ngo, J., Pérez-Rodrigo, C., Aranceta, J., & Fletcher, R. (2006). The contribution of ready-to-eat cereals to daily nutrient intake and breakfast quality in a mediterranean setting. Journal of the American College of Nutrition, 25(2), 135�??143. https://doi.org/10.1080/07315724.2006.10719524

Borém, A. (1997). Melhoramento de Plantas. Viçosa, MG: Editora UFV.

Bothmer, V. R., Jacobsen, N., Baden, C., Jorgensen, R. B., & Laursen, I. L. (1995). An ecogeographical study of the genus Hordeum: Systematic and ecogeographic studies on crop genepools 7 (2nd ed.). Rome, Italy: lPGRl.

Boudiar, R., Casas, A. M., Cantalapiedra, C. P., Gracia, M. P., & Igartua, E. (2016). Identification of quantitative trait loci for agronomic traits contributed by a barley (Hordeum vulgare) Mediterranean landrace. Crop and Pasture Science, 67(1), 37�??46. https://doi.org/10.1071/CP15149

Boyer, J. S., & Westgate, M. E. (2004). Grain yields with limited water. Journal of Experimental Botany, 55(407), 2385�??2394. https://doi.org/10.1093/jxb/erh219

Boyles, S. L., Anderson, V. L., & Koch, K. B. (2017). Feeding barley to cattle. Columbus, Ohio: Ohio State University.

Buerstmayr, H., Ban, T., & Anderson, J. A. (2009). QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breeding, 128(1), 1�??26. https://doi.org/10.1111/j.1439-0523.2008.01550.x

Cambraia, J. (2005). Aspectos bioquímicos, celulares e fisiológicos dos estresses nutricionais em plantas. In U. M. T. Nogueira, R. J. M. C., Araújo, E. L., Willadino, L. G., Cavalcante (Ed.), Estresses ambientais: danos e benefícios em plantas (pp. 95�??105). Recife: Imprensa Universitária UFRPE.

Cantero, C, Villar, J. M., & Fereres, E. (1989). Relaciones hídricas de genótipos de cereal de invierno en condiciones de secano semiárido em la Segarra. Riegos y Drenages, 29, 32�??39.

Carneiro, M. S., & Vieira, M. L. C. (2002). Mapas genéticos em plantas. Bragantia, 61(2), 89�??100. https://doi.org/10.1590/s0006-87052002000200002

Cattivelli, L., Baldi, P., Crosatti, C., Grossi, M., Valè, G., & Stanca, A. M. (2002). Genetic bases of barley physiological response to stressful conditions. In I. Slafer, G. A., Molina-Cano, J. L., Savin, R.., Araus, J. L., & Romagosa (Ed.), Barley sciencei: recent advantages from molecular biology to agronomy of yield and qualità. New York, USA: Food Product Press.

Cattivelli, L., Ceccarelli, S., Romagosa, I., & Stanca, M. (2010). Abiotic stresses in Barley: Problems and solutions. In E. Steven (Ed.), Barley: Production, Improvement, and Uses (pp. 282�??306). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470958636.ch10

Ceccarelli, S., Grando, S., Baum, M., & Udupa, S. M. (2015). Breeding for drought resistance in a changing climate. Challenges and Strategies of Dryland Agriculture, (32), 167�??190. https://doi.org/10.2135/cssaspecpub32.c11

Coelho, C. C. R., Neves, M. G., Oliveira, L. M., Conceição, A. G. C., Okumura, R. S., & Oliveira-Neto, C. F. (2013). Biometria Em Plantas De Milho Submetidas Ao Alagamento. Revista Agroecossistemas, 5(1), 32. https://doi.org/10.18542/ragros.v5i1.1408

Comadran, J., Russell, J. R., Booth, A., Pswarayi, A., Ceccarelli, S., Grando, S., �?� Romagosa, I. (2011). Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in hordeum vulgare in mediterranean environments. Theoretical and Applied Genetics, 122(7), 1363�??1373. https://doi.org/10.1007/s00122-011-1537-4

CONAB - Companhia Nacional de Abastecimento. (2018). Acompanhamento da safra brasileira de grãos. V. 6 - SAFRA 2018/19- N. 3 - Terceiro levantamento/dezembro 2018. CONAB. Retrieved from http://www.conab.gov.br/index.../16482_45de496aac454b837dd01c66c884650

CONAB - Companhia Nacional de Abastecimento. (2021). Acompanhamento da safra brasileira de grãos. V. 8 - Safra 2020/21, N.6 - Sexto levantamento, 2021. CONAB. Retrieved from http://www.conab.gov.br/index.../16482_45de496aac454b837dd01c66c884650

Courtois, B., Shen, L., Petalcorin, W., Carandang, S., Mauleon, R., & Li, Z. (2003). Locating QTLs controlling constitutive root traits in the rice population IAC 165 x Co39. Euphytica, 134(3), 335�??345. https://doi.org/10.1023/B:EUPH.0000004987.88718.d6

Craufurd, P. Q., Flower, D. J., & Peacock, J. M. (1993). Effect of heat and drought stress on sorghum (Sorghum bicolor). I. Panicle development and leaf appearance. Experimental Agriculture, 29(1), 61�??76. https://doi.org/10.1017/S0014479700020421

Dellagostin, S. M., Martinazzo, E. G., Pimentel-Junior, R., Troyjack, C., & Pedó, T. (2017). Temperaturas extremas e qualidade fisiológica de sementes de plantas de lavoura. In F. A. Aumonde, T. Z., Pedó, T., Martinazzo, E. G., & Villela (Ed.), Estresses Ambientais e a Produção De Sementes: Ciência e Aplicação (pp. 171�??198). Pelotas, RS: Cópias Santa Cruz.

EMBRAPA �?? Empresa Brasileira de Pesquisa Agropecuária. (2005). Cultivo do Arroz Irrigado no Brasil - Sistemas de Produção, 3. Pelotas, RS: Embrapa Clima Temperado.

Essemine, J., Ammar, S., & Bouzid, S. (2010). Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10(6): p.565-572. DOI: 10.3923 / jbs.2010.565.572John, E., Begg & Neil, C ., T. C. (1967). CROP WATER DEFICITS. Angewandte Chemie International Edition, 6(11), 951�??952.

FAO - Food and Agriculture Organization of the United Nations. (2000). Global network on integrated soil management for sustainable use of salt-affected soils. Rome, Italy. Retrieved from http://www.fao.org/home/en/

FAOSTAT - Food and Agriculture Organization of the United Nations. (2018). Statistical database. Food. agriculture organization of the United Nations. Rome, Italy. Retrieved from http://www.fao.org/faostat/en/#home

Ferrão, R. G., Moreira, S. O., Ferrão, M. A. G., Riva, E. M., Arantes, L. O., Costa, A. F. S., �?� Galvêas, P. A. O. (2016). Genética e melhoramento: desenvolvimento e recomendação de cultivares com tolerância à seca para o Espírito Santo. Incaper em Revista, 6(4), 51�??71. Retrieved from https://ainfo.cnptia.embrapa.br/digital/bitstream/item/157824/1/Genetica-e-melhoramento-desenvolvimento-e-recomendacao.

Ferrari, J. T. (2003). Incidência de Bipolaris sorokiniana nas sementes e a transmissão para plantas de cevada. Scientia Agraria, 4(1), 84. https://doi.org/10.5380/rsa.v4i1.1073

Ferreira, J. R., Pereira, J. F., Turchetto, C., Minella, E., Consoli, L., & Delatorre, C. A. (2016). Assessment of genetic diversity in Brazilian barley using SSR markers. Genetics and Molecular Biology, 39(1), 86�??96. https://doi.org/10.1590/1678-4685-GMB-2015-0148

Fritsche-Neto, R., & Borém, A. (2011). Melhoramento de plantas para condições de estresses abióticos. Visconde do Rio Branco: Suprema.

Galon, L., Tironi, S. P., Rocha, P. R. R., Concenço, G., Silva, A. F., Vargas, L., �?� Ferreira, F. A. (2011). Habilidade Competitiva De Cultivares De Cevada Convivendo Com Azevém. Planta Daninha, 29(4), 771�??781. https://doi.org/10.1590/S0100-83582011000400007

Gheyi, H. R. (2000). Problemas de salinidade na agricultura irrigada. In J. R. C. Oliveira, T. S., Assis-Junior, R. N., Romero, R. E., & Silva (Ed.), Agricultura, sustentabilidade e o semiárido (pp. 329�??346). Fortaleza, CE: Sociedade Brasileira de Ciências do Solo.

Guerrero, A. (1999). Cultivos herbáceos extensivos (6th ed.). Madrid, ES: Mundi prensa.

Gupta, P. K., Balyan, H. S., & Gahlaut, V. (2017). QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy, 7(1), 1�??21. https://doi.org/10.3390/agronomy7010005

Gürel, F., �?ztürk, Z. N., Uçarlı, C., & Rosellini, D. (2016). Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in Plant Science, 7(AUG2016). https://doi.org/10.3389/fpls.2016.01137

Houston, K., McKim, S. M., Comadran, J., Bonar, N., Druka, I., Uzrek, N., �?� Waugha, R. (2013). Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16675�??16680. https://doi.org/10.1073/pnas.1311681110

Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987�??12992. https://doi.org/10.1073/pnas.0604882103

Kellogg, E. A. (2001). Update on Evolution Evolutionary History of the Grasses 1. Plant Physiology, 125(March 2001), 1198�??1205. Retrieved from http://www.plantphysiol.org

Kishor, P. B. K., Rajesh, K., Reddy, P. S., Seiler, C., & Sreenivasulu, N. (2014). Drought stress tolerance mechanisms in barley and its relevance to cereals. Biotechnology in Agriculture and Forestry, 69, 161�??179. https://doi.org/10.1007/978-3-662-44406-1_9

Larcher, W. (2004). Ecofisiologia vegetal. São Carlos, SP: Rima Artes.

Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Ostergaard, L., Patron, N., �?� Harwood, W. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biology, 16(1), 1�??13. https://doi.org/10.1186/s13059-015-0826-7

Lazzari, F. A. (1996). Recebimento, secagem e armazenagem de cevada cervejeira. Manhattan, Kansas State University

Liu, B. H. (1998). Statistical genomics: linkage, mapping and QTL analysis. New York, USA: CRC Press.

Loomis, R. S., & Coonor, D. J. (1992). Crop Ecology: productivity and management in agricultural systems. Cambridge: Cambridge University Press.

Lopes, N. F., & Lima, M. G. S. (2015). Fisiologia da produção. Viçosa, MG: Editora UFV.

Magalhães, J. A. (2011). A Influência de Características Fenológicas na Avaliação da Tolerância à Seca em Sorgo.

MAPA - Ministério da Agricultura Pecuária e Abastecimento. (2020). PROJE�?�?ES DO AGRONEG�?CIO Brasil 2019/20 a 2029/30 Projeções de Longo Prazo. Mapa - Ministério da Agricultura Pecuária e Abastecimento, 102.

Mayer, E. T., Fuke, G., Nörnberg, J. L., & Minella, E. (2007). Caracterização nutricional de grãos integrais e descascados de cultivares de cevada. Pesquisa Agropecuária Brasileira, 42(11), 1635�??1640. https://doi.org/10.1590/s0100-204x2007001100016

Men, K., Duan, X., He, Z., Yang, Y., Yao, S., & Wei, Y. (2017). CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Sciences, 60(5), 447�??457. https://doi.org/10.1007/s11427-017-9032-4

Minella, E. (2012). Árvore do conhecimento: cevada. Brasília, DF: Embrapa de Informação Tecnológica. Retrieved from https://www.agencia.cnptia.embrapa.br/gestor/cevada/Abertura.html

Minella, E. (1998). Hibridação em cevada. In A. Borém (Ed.), Hibridação artificial de plantas. Viçosa, MG: Editora UFV.

Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80(6), 758�??763. Retrieved from https://www.jstor.org/stable/24105661?seq=1

Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15�??19. https://doi.org/10.1016/j.tplants.2005.11.002

Mori, C., & Minella, E. (2012). Aspectos econômicos e conjunturais da cultura da cevada - Documentos on line 139. Passo Fundo, RS: Embrapa Trigo.

Muñoz-Amatriaín, M., Eichten, S. R., Wicker, T., Richmond, T. A., Mascher, M., Steuernagel, B., �?� Stein, N. (2013). Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biology, 14(6), 1�??17. https://doi.org/10.1186/gb-2013-14-6-r58

Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5(MAY), 1�??7. https://doi.org/10.3389/fpls.2014.00170

Narwal, S., Kumar, D., Kharub, A. S., & Verma, R. P. S. (2020). Barley biofortification: present status and future prospects. Wheat and Barley Grain Biofortification. Elsevier Inc. https://doi.org/10.1016/b978-0-12-818444-8.00011-0

Oscarsson, M., Andersson, R., Salomonsson, A. C., & �?man, P. (1996). Chemical composition of barley samples focusing on dietary fibre components. Journal of Cereal Science, 24(2), 161�??170. https://doi.org/10.1006/jcrs.1996.0049

Oukarroum, A., Madidi, S. El, Schansker, G., & Strasser, R. J. (2007). Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60(3), 438�??446. https://doi.org/10.1016/j.envexpbot.2007.01.002

Panizo-Casado, M., Déniz-Expósito, P., Rodríguez-Galdón, B., Afonso-Morales, D., Ríos-Mesa, D., Díaz-Romero, C., & Rodríguez-Rodríguez, E. M. (2020). The chemical composition of barley grain (Hordeum vulgare L.) landraces from the Canary Islands. Journal of Food Science, 85(6), 1725�??1734. https://doi.org/10.1111/1750-3841.15144

Pennisi, E. (2008). The blue revolution, drop by drop, gene by gene. Science, 320, 21�??39. https://doi.org/10.1126 / science.320.5873.171

Poets, A. M., Fang, Z., Clegg, M. T., & Morrell, P. L. (2015). Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biology, 16(1), 1�??11. https://doi.org/10.1186/s13059-015-0712-3

Popinigis, F. (1985). Fisiologia de sementes (2nd ed.). Brasília, DF.

Poulsen, H. D., Blaabjerg, K., Norgaard, J. V., & Ton Nu, M. A. (2012). High-moisture air-tight storage of barley and wheat improves nutrient digestibility. Journal of Animal Science, 90(SUPPL4), 242�??244. https://doi.org/10.2527/jas.53985

Prasad, P. V. V., Pisipati, S. R., Momčilovi�?, I., & Ristic, Z. (2011). Independent and Combined Effects of High Temperature and Drought Stress During Grain Filling on Plant Yield and Chloroplast EF-Tu Expression in Spring Wheat. Journal of Agronomy and Crop Science, 197(6), 430�??441. https://doi.org/10.1111/j.1439-037X.2011.00477.x

Rebetzke, G. J., Condon, A. G., Richards, R. A., & Farquhar, G. D. (2002). Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Science, 42(3), 739�??745. https://doi.org/10.2135/cropsci2002.7390

Reid, D. A. (1976). Genetic potential for solving problems of soil mineral stress: aluminum and manganese toxicities in cereal grains. In M. J. Wright (Ed.), Plant adaptation to mineral stress in problem soils (pp. 5�??64). Ithaca: Cornell University Press.

Ribaut, J. M., & Ragot, M. (2007). Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany, 58(2), 351�??360. https://doi.org/10.1093/jxb/erl214

Richardson, S. G., & McCree, K. J. (1985). Carbon Balance and Water Relations of Sorghum Exposed to Salt and Water Stress. Plant Physiology, 79(4), 1015�??1020. https://doi.org/10.1104/pp.79.4.1015

Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201�??3212. https://doi.org/10.1093/jxb/ert158

Rosa, T. D., Pedó, T., Martinazzo, E. G., Gehling, V. M., Aisenberg, G. R., Aumonde, T. Z., & Villela, F. A. (2015). Alagamento do Solo: Efeito no Crescimento Inicial da Aveia Branca (Avena sativa L.). Scientia Agraria Paranaensis, 14(2), 127�??131. https://doi.org/10.18188/1983-1471/sap.v14n2p127-131

Sachs, M., & Vartapetian, B. (2007). Plant anaerobic stress I. Metabolic adaptation to oxygen deficiency. Plant Stress, 1(2), 123�??135.

Savin, R., & Nicolas, M. E. (1996). Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Australian Journal of Plant Physiology, 23(2), 201�??210. https://doi.org/10.1071/PP9960201

Scheeren, P. L., Caierão, E., Silva, M. S., & Bonow, S. (2012). Melhoramento de trigo no Brasil. In Trigo no Brasil (pp. 427�??452). Sete Lagoas, MG: Embrapa Milho e Sorgo. Retrieved from www.cnpms.embrapa.br

Shaar-Moshe, L., Hübner, S., & Peleg, Z. (2015). Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biology, 15(1), 1�??18. https://doi.org/10.1186/s12870-015-0493-6

Shanker, A., & Venkateswarlu, B. (2011). Abiotic stress response in plants. Physiological, biochemical and genetic perspectives. https://doi.org/10.5772/1762

Silvar, C., Casas, A. M., Kopahnke, D., Habeku�?, A., Schweizer, G., Gracia, M. P., �?� Ordon, F. (2010). Screening the Spanish Barley Core Collection for disease resistance. Plant Breeding, 129(1), 45�??52. https://doi.org/10.1111/j.1439-0523.2009.01700.x

Silveira, S. F.,Luz, V. K., Wolte, D. D., Santos, F. I. C., Viana, T. P., Fernandes, B. S., �?� Oliveira, A. C. (2014). Response of oat seedlings to stress caused by acetic and butyric acids. Bragantia, 73(4), 345�??356. https://doi.org/10.1590/1678-4499.166

Slafer, G. A., Satorre, E. H., & Andrade, H. (1994). Increases in grain yield in bread wheat from breeding and associated physiological changes. In G. A. Slafer (Ed.), Genetic improvement of field crops (pp. 1�??67). New York, USA: Marcel Dekker.

Slootmaker, L. A. J., & Arzadun, J. F. (1969). Selection of young barley plants for tolerance to high soil acidity in relation with some agronomic characteristics of mature plants. Euphytica, 18(2), 157�??162. https://doi.org/10.1007/BF00035686

Soares, M. A. S., & Machado, O. L. T. (2007). Defesa de plantas: sinalização química e espécies reativas de oxigênio. Revista Trópica: Ciências Agrárias e Biológicas, 1, 9�??19.

Stanca, A. M., Romagosa, I., Takeda, K., Lundborg, T., Terzi, V., & Cattivelli, L. (2003). Diversity in abiotic stresses. In K. Bothmer, R. V., Knüpffer, H., Hintum, T. V. & Sato (Ed.), Diversity in Barley (Hordeum vulgare). Elsevier Science.

Szareski, V. J., Carvalho, I. R., Rosa, T. C., Dellagostin, S. M., de Pelegrin, A. J., Barbosa, M. H., �?� Pegoraro, C. (2018). Wild Species: An Alternative for Rice Breeding under Abiotic Stress Conditions. American Journal of Plant Sciences, 09(06), 1093�??1104. https://doi.org/10.4236/ajps.2018.96083

Taiz, L., & Zeiger, E. (2009). Fisiologia vegetal (4th ed.). Porto Alegre, RS: ArtMed.

Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503�??527. https://doi.org/10.1093/aob/mcg058

Teulat, B., Merah, O., Souyris, I., & This, D. (2001). QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Springer-Verlag, 103, 774�??787. https://doi.org/https://doi.org/10.1007/s001220100619

Thomas, T. H., & Fukai, S. (1995). Growth and yield response of barley and chickpea to water stress under three environments in southeast Queensland. I. Light interception, crop growth and grain yield. Crop and Pasture Science., 46, (1): 17-33. DOI: 10.1071 / AR9950035

Toppa, E. V. B., & Brambilla, W. P. (2011). O melhoramento de plantas e a salinidade dos solos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 6(1), 21�??25.

Troyjack, C., Szarescki, V. J., Martinazzo, E. G., Aumonde, T. Z., & Pedó, T. (2017). Ecofisiologia, produção e qualidade de sementes de plantas de lavoura em resposta ao alagamento do solo e a restrição hídrica. In F. A.

Aumonde, T. Z., Pedó, T., Martinazzo. E. G., & Villela (Ed.), Estresses ambientais e a produção de sementes: cência e aplicação (pp. 139�??169). Pelotas, RS: Cópias Santa Cruz.

Turchetto, C., Hartke, S., Caverzan, A., & Turchetto-Zole, A. C. (2017). Enfoque molecular de estresses abióticos em plantas. In F. A. Aumonde, T. Z. Pedó, T. Martinazzo, E. G. Villela (Ed.), Estresses ambientais e a produção de sementes: ciência e aplicação. Pelotas, RS: Cópias Santa Cruz.

Ullrich, S. E. (2011). Significance, adaptation, production, and trade of barley. In S. E. Ullrich (Ed.), Barley: production, improvement and uses (pp. 3�??13). Chichester, West Sussex, UK: Wiley- Blackwell.

Vasudevan, K., Cruz, C. M. V., Gruissem, W., & Bhullar, N. K. (2014). Large scale germplasm screening for identification of novel rice blast resistance sources. Frontiers in Plant Science, 5(OCT), 1�??9. https://doi.org/10.3389/fpls.2014.00505

Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1�??14. https://doi.org/10.1007/s00425-003-1105-5

Wang, X., Liu, T., Li, C., & Chen, H. (2012). Effects of soil flooding on photosynthesis and growth of Zea mays L. seedlings under different light intensities. African Journal of Biotechnology, 11: 7676-7685. DOI: 10.5897 / AJB11.3345

Wehner, G. G., Balko, C. C., Enders, M. M., Humbeck, K. K., & Ordon, F. F. (2015). Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0524-3

Willadino, L., & Camara, T. R. (2010). Tolerância das plantas à salinidade: aspectos fisiológicos e bioquímicos. Enciclopédia Biosfera, 6(11), 1�??23.

Xiao, B., Huang, Y., Tang, N., & Xiong, L. (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115(1), 35�??46. https://doi.org/10.1007/s00122-007-0538-9

Yordanova, R. Y., & Popova, L. P. (2001). Photosynthetc response of barley plants to soil flooding. Photosynthetica, 39(4), 515�??520.

Zabalza, A., Dongen, J. T., Froehlich, A., Oliver, S. N., Faix, B., Gupta, K. J., �?� Geigenberger, P. (2009). Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiology, 149(2), 1087�??1098. https://doi.org/10.1104/pp.108.129288

Zhang, H., Irving, L. J., McGill, C., Matthew, C., Zhou, D., & Kemp, P. (2010). The effects of salinity and osmotic stress on barley germination rate: Sodium as an osmotic regulator. Annals of Botany, 106(6), 1027�??1035. https://doi.org/10.1093/aob/mcq204

Published
2021-05-05
How to Cite
Troyjack, C., Carvalho, I. R., Pimentel, J. R., Junior, G. T., Szareski, V. J., Dubal, Ítala T. P., Jaques, L. B. A., & Conte, G. G. (2021). Environmental stresses and its implications on breeding of brewing barley. Agronomy Science and Biotechnology, 7, 1-18. https://doi.org/10.33158/ASB.r123.v7.2021

Most read articles by the same author(s)

1 2 > >>