SNP marker association for incrementing soybean seed protein content

  • Arthur Bernardeli Universidade Federal de Viçosa https://orcid.org/0000-0002-9163-2913
  • Aluízio Borém Universidade Federal de Viçosa https://orcid.org/0000-0003-1386-5903
  • Rodrigo Lorenzoni Universidade Federal de Viçosa https://orcid.org/0000-0002-6833-7692
  • Rafael Aguiar Universidade Federal de Viçosa
  • Jessica Nayara Basilio Silva Universidade Federal de Viçosa
  • Rafael Delmond Bueno Universidade Federal de Viçosa
  • Cléberson Ribeiro Universidade Federal de Viçosa
  • Newton Piovesan Universidade Federal de Viçosa
  • Maximiller Dal-Bianco Lamas Costa Universidade Federal de Viçosa
Keywords: Additive effect, allelic polymorphism, favorable alleles, Glycine max, quantitative trait loci, transgressive genotypes

Abstract

Soybean seed protein content (SPC) has been decreasing throughout last decades and DNA marker association has shown its usefulness to improve this trait even in soybean breeding programs that focus primarily on soybean yield and seed oil content (SOC). Aiming to elucidate the association of two SNP markers (ss715630650 and ss715636852) to the SPC, a soybean population of 264 F5-derived recombinant inbred lines (RILs) from a bi-parental cross was tested in four environments. Through the single-marker analysis, the additive effect () and the portion of SPC variation due to the SNPs () for single and multi-environment data were assessed, and transgressive RILs for SPC were observed. The estimates revealed the association of both markers to SPC in most of environments. The marker ss715636852 was more frequently associated to SPC, including multi-environment data, and contributed up to  = 1.30% for overall SPC, whereas ss715630650 had significant association just in two locations, with contributions of  = 0.76% and  = 0.74% to overall SPC in Vic1 and Cap1, respectively. The RIL 84-13 was classified as an elite genotype due to its favorable alleles and high SPC means, which reached 53.78% in Cap1, and 46.33% in MET analysis. Thus, these results confirm the usefulness of the SNP marker ss715636852 in a soybean breeding program for SPC.

CROSSMARK_Color_horizontal.svg

Downloads

Download data is not yet available.

Author Biographies

Arthur Bernardeli, Universidade Federal de Viçosa

Department of Agronomy

Aluízio Borém, Universidade Federal de Viçosa

Department of Agronomy

Rodrigo Lorenzoni, Universidade Federal de Viçosa

Department of Biochemistry and Molecular Biology

Jessica Nayara Basilio Silva, Universidade Federal de Viçosa

Department of Biochemistry and Molecular Biology

Rafael Delmond Bueno, Universidade Federal de Viçosa

Department of Biochemistry and Molecular Biology

Cléberson Ribeiro, Universidade Federal de Viçosa

Department of Biology

Newton Piovesan, Universidade Federal de Viçosa

Department of BioAgro

Maximiller Dal-Bianco Lamas Costa, Universidade Federal de Viçosa

Department of Biochemistry

References

Bandillo, N., Jarquin, D., Song, Q., Nelson, R., Cregan, P., Specht, J., & Lorenz, A. (2015). A Population Structure and Genome-Wide Association Analysis on the USDA Soybean Germplasm Collection. The Plant Genome, 8(3), plantgenome2015.04.0024. https://doi.org/10.3835/plantgenome2015.04.0024

Bolon, Y. T., Joseph, B., Cannon, S. B., Graham, M. A., Diers, B. W., Farmer, A. D., �?� Vance, C. P. (2010). Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biology, 10(41), 4�??24. https://doi.org/10.1186/1471-2229-10-41

Brummer, E. C., Graef, G. L., Orf, J., Wilcox, J. R., & Shoemaker, R. C. (1997). Mapping QTL for seed protein and oil content in eight soybean populations. Crop Science, 37(2), 370�??378. https://doi.org/10.2135/cropsci1997.0011183X003700020011x

Cruz, C. D. (2013). GENES - Software para análise de dados em estatística experimental e em genética quantitativa. Acta Scientiarum - Agronomy, 35(3), 271�??276. https://doi.org/10.4025/actasciagron.v35i3.21251

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19�??21. https://doi.org/10.1007/BF02712670

Hwang, E. Y., Song, Q., Jia, G., Specht, J. E., Hyten, D. L., Costa, J., & Cregan, P. B. (2014). A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 15(1), 1�??12. https://doi.org/10.1186/1471-2164-15-1

Jun, T. H., Van, K., Kim, M. Y., Lee, S. H., & Walker, D. R. (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 162(2), 179�??191. https://doi.org/10.1007/s10681-007-9491-6

Kang, M. S. (1997). Using Genotype-by-Environment Interaction for Crop Cultivar Development. Advances in Agronomy, 62(C), 199�??252. https://doi.org/10.1016/S0065-2113(08)60569-6

Kwon, S. H., & Torrie, J. H. (1964). Heritability of and Interrelationships Among Traits of Two Soybean Populations 1 . Crop Science, 4(2), 196�??198. https://doi.org/10.2135/cropsci1964.0011183x000400020023x

Li, Z., Stewart-Brown, B., Steketee, C., Vaughn, J. (2017). Impact of Genomic Research on Soybean Breeding. In M. K. Nguyen, H. T., Bhattacharyya (Ed.), The Soybean Genome (pp. 111�??129). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-64198-0

Mahmoud, A. A., Natarajan, S. S., Bennett, J. O., Mawhinney, T. P., Wiebold, W. J., & Krishnan, H. B. (2006). Effect of six decades of selective breeding on soybean protein composition and quality: A biochemical and molecular analysis. Journal of Agricultural and Food Chemistry, 54(11), 3916�??3922. https://doi.org/10.1021/jf060391m

Patil, G., Mian, R., Vuong, T., Pantalone, V., Song, Q., Chen, P., �?� Nguyen, H. T. (2017). Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theoretical and Applied Genetics, 130(10), 1975�??1991. https://doi.org/10.1007/s00122-017-2955-8

Patil, G., Vuong, T. D., Kale, S., Valliyodan, B., Deshmukh, R., Zhu, C., �?� Nguyen, H. T. (2018). Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnology Journal, 16(11), 1939�??1953. https://doi.org/10.1111/pbi.12929

Piper, E. L., & Boote, K. I. (1999). Temperature and cultivar effects on soybean seed oil and protein concentrations. Journal of the American Oil Chemists�?? Society, 76(10), 1233�??1241. https://doi.org/10.1007/s11746-999-0099-y

Rao, C. R. (1973). Linear statistical inference and its applications. In Zeitschrift Angewandte Mathematik und Mechanik (XX, Vol. 57). John Wiley & Sons. https://doi.org/10.1002/zamm.19770570832

R Core Team. (2019). R: A Language and Environment for Statistical Computing Version 3.5.2, R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21�??33. Retrieved from http://instatmy.org.my/downloads/e-jurnal 2/3.pdf%0Ahttps://www.nrc.gov/docs/ML1714/ML17143A100.pdf

Reinprecht, Y., Poysa, V. W., Yu, K., Rajcan, I., Ablett, G. R., & Pauls, K. P. (2006). Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome, 49(12), 1510�??1527. https://doi.org/10.1139/G06-112

Rodrigues, J. I. S., de Miranda, F. D., Ferreira, A., Borges, L. L., Ferreira, M. F. da S., Good-God, P. I. V., �?� Moreira, M. A. (2010). Mapeamento de QTL para conteúdos de proteína e óleo em soja. Pesquisa Agropecuaria Brasileira, 45(5), 472�??480. https://doi.org/10.1590/S0100-204X2010000500006

Rodrigues, J. I. S., Arruda, K. M. A., Cruz, C. D., Piovesan, N. D., de Barros, E. G., & Moreira, M. A. (2014). Biometric analysis of protein and oil contents of soybean genotypes in different environments. Pesquisa Agropecuaria Brasileira, 49(6), 475�??482. https://doi.org/10.1590/S0100-204X2014000600009

Santana, D. P., & Moura-Filho, W. (1978). Estudos de solos do Triângulo Mineiro e de Viçosa. I. Mineralogia. Embrapa Milho e Sorgo-Artigo Em Periódico Indexado (ALICE). https://www.embrapa.br/busca-de-publicacoes/-/publicacao/477158/estudos-de-solos-do-triangulo-mineiro-e-de-vicosa-i-mineralogia

Schuster, I., & Cruz, C. D. (2008). Estatística Genômica (2nd ed.). Viçosa: Editora UFV

Singh, R. J. (2017). Botany and Cytogenetics of Soybean. In M. K. Nguyen, H. T., Bhattacharyya (Ed.), The Soybean Genome (pp. 11�??40). Springer. https://doi.org/https://doi.org/10.1007/978-3-319-64198-0

Song, Q., Hyten, D. L., Jia, G., Quigley, C. V., Fickus, E. W., Nelson, R. L., & Cregan, P. B. (2013). Development and Evaluation of SoySNP50K, a High-Density Genotyping Array for Soybean. PLoS ONE, 8(1), 1�??12. https://doi.org/10.1371/journal.pone.0054985

Sebolt, A. M., Shoemaker, R. C., & Diers, B. W. (2000). Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Science, 40(5), 1438�??1444. https://doi.org/10.2135/cropsci2000.4051438x

Sediyama, T., Silva, F., & Borém, A. (2015). Soja: do plantio à colheita. Viçosa: Editora UFV

Vaughn, J. N., Nelson, R. L., Song, Q., Cregan, P. B., & Li, Z. (2014). The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3: Genes, Genomes, Genetics, 4(11), 2283�??2294. https://doi.org/10.1534/g3.114.013433

Wang, X., Jiang, G. L., Green, M., Scott, R. A., Song, Q., Hyten, D. L., & Cregan, P. B. (2014). Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Molecular Genetics and Genomics : MGG, 289(5), 935�??949. https://doi.org/10.1007/s00438-014-0865-x

Warrington, C. V., Abdel-Haleem, H., Hyten, D. L., Cregan, P. B., Orf, J. H., Killam, A. S., �?� Boerma, H. R. (2015). QTL for seed protein and amino acids in the Benning �? Danbaekkong soybean population. Theoretical and Applied Genetics, 128(5), 839�??850. https://doi.org/10.1007/s00122-015-2474-4

Yesudas, C. R., Bashir, R., Geisler, M. B., & Lightfoot, D. A. (2013). Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest. Molecular Breeding, 31(3), 693�??703. https://doi.org/10.1007/s11032-012-9827-3

Zhang, J., Wang, X., Lu, Y., Bhusal, S. J., Song, Q., Cregan, P. B., �?� Jiang, G. L. (2018). Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding. Molecular Plant, 11(3), 460�??472. https://doi.org/10.1016/j.molp.2017.12.016

Zhang, Y. H., Liu, M. F., He, J. B., Wang, Y. F., Xing, G. N., Li, Y., �?� Gai, J. Y. (2015). Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics, 128(6), 1061�??1072. https://doi.org/10.1007/s00122-015-2490-4

Published
2020-07-17
How to Cite
Bernardeli, A., Borém, A., Lorenzoni, R., Aguiar, R., Nayara Basilio Silva, J., Delmond Bueno, R., Ribeiro, C., Piovesan, N., & Dal-Bianco Lamas Costa, M. (2020). SNP marker association for incrementing soybean seed protein content. Agronomy Science and Biotechnology, 6, 1-11. https://doi.org/10.33158/ASB.r107.v6.2020

Most read articles by the same author(s)