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   ABSTRACT 
Soybean seed protein content (SPC) has been decreasing throughout last decades and DNA marker 
association has shown its usefulness to improve this trait even in soybean breeding programs that focus 
primarily on soybean yield and seed oil content (SOC). Aiming to elucidate the association of two SNP 
markers (ss715630650 and ss715636852) to the SPC, a soybean population of 264 F5-derived 
recombinant inbred lines (RILs) from a bi-parental cross was tested in four environments. Through the 
single-marker analysis, the additive effect (𝑎) and the portion of SPC variation due to the SNPs (𝑟2) for 
single and multi-environment data were assessed, and transgressive RILs for SPC were observed. The 
estimates revealed the association of both markers to SPC in most of environments. The marker 
ss715636852 was more frequently associated to SPC, including multi-environment data, and contributed 
up to 𝑎 = 1.30% for overall SPC, whereas ss715630650 had significant association just in two locations, 
with contributions of 𝑎 = 0.76% and 𝑎 = 0.74% to overall SPC in Vic1 and Cap1, respectively. The RILs 84-
13 was classified as an elite genotype due to its favorable alleles and high SPC means, which reached 
53.78% in Cap1, and 46.33% in MET analysis. Thus, these results confirm the usefulness of the SNP 
marker ss715636852 in a soybean breeding program for SPC.  

 
Keywords:  additive effect, allelic polymorphism, favorable alleles, Glycine max, quantitative trait loci, 
transgressive genotypes.   

 

 

INTRODUCTION 
 

Soybean [Glycine max (L.) Merr.] is a major crop widely cultivated worldwide, and its importance is mainly 
assigned to its seed protein content (SPC), denoting the relevance of this crop for human and animal 
nutrition, as well as economy and world food security. SPC is quantitatively inherited and correlates 
negatively with most of the main traits taken into account in a soybean-breeding program (Kwon & Torrie, 
1964). It is complex to elevate the percentages of SPC, once the selection towards grain yield and seed oil 
content (SOC) has been prioritized when compared to protein increment (Bandillo et al., 2015; Patil et al., 
2018). For example, SPC of ancestral soybean cultivars and early releases declined from 40% to 37% during 
the period of 1924 to 2004 at the United States, whereas grain yield was incremented steadily during this 
same time (Mahmoud et al., 2006). 

Promising methodologies are being proposed to increase soybean SPC without compromising grain yield, 
and efforts concentrate in gathering adequate specific allelic combinations for performing marker assisted 
selection. By using the marker information within or in proximity to important protein-related QTLs 
(Quantitative Trait Loci), strategies involving the validation of molecular markers in structured populations 
have been combined with traditional breeding methods in order to deliver more rapid genetic gains in 
many soybean traits (Jun et al., 2008).  

In view of the soybean protein demand, several markers have been described to have an important effect 
over SPC on the 20 soybean chromosomes (https://www.soybase.org/). Zhang et al. (2015) validated SSR 
(simple sequence repeats) markers followed by two cycles of marker-assisted selection, where parent lines 
were outperformed in 9% regarding SPC of the selected progenies. Rodrigues et al. (2010) performed a 
single-marker association analysis in two SSR markers located at D1a soybean linkage group, where 5.57% 
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of the SPC phenotypic variation was attributed to the marker satt408.  
Gains in SPC are complex for soybean breeding programs and fundamental to supply the global demand 

for vegetable protein. Therefore, this study aimed to evaluate the effects of two single nucleotide 
polymorphisms (SNPs) over soybean SPC in a single and multi-environment (MET) approach. 

 

MATERIALS AND METHODS 
 

Plant material and field trials 

 

In this study, 264 F5-derived soybean recombinant inbred lines (RILs) were obtained from a single 
cross between PMQS12 and PMQS80. The parent material belonged to BioAgro soybean breeding program 
germplasm of Universidade Federal de Viçosa. SPC of PMQS12 and PMQS80 averaged 45.7 and 46.4% under 
greenhouse conditions, respectively. The population was advanced through the single seed descent (SSD) 
method under greenhouse environment up to F5 generation and their derived seeds were consistently used 
for all phenotyping trials. The RILs population, parent lines and the checks ANSC83022, M7739 and M8372 
were tested in four environments in southeastern Brazil, Viçosa (20°45'14"S - 42°52'55"O, 649 m of 
altitude), and Capinópolis (18°40'55"S - 49°34'12"O, 530 m of altitude), both at Minas Gerais state, in 2017 
and 2018 crop years. The field trials were set under randomized complete block design with two replicates. 
Each plot consisted in a 1m row spaced 0.5m apart, with 15 plants as final plant density per plot. The crop 
management from planting to harvest was performed in accordance to Sediyama et al. (2015). 

The soil of the experimental sites comprised red-yellow dystrophic latosol with clayey texture, and 
dark red eutrophic latosol with medium texture, at Viçosa and Capinópolis, respectively (Santana & Moura 
Filho, 1978). The climatic conditions within the experimental seasons (i.e. average temperatures and 
rainfall) for both locations can be checked at http://www.inmet.gov.br/. The environments Viçosa in 2017, 
Viçosa in 2018, Capinópolis in 2017, and Capinópolis in 2018 were referred as Cap1, Cap2, Vic1 and Vic2, 
respectively.  

 
Phenotyping  

 
After manual harvesting of all plants per plot, a 30g random seed sample was collected, milled and 

the SPC was assessed through a near infrared spectrometry equipment (Thermo Fisher Antaris II FT-NIR) 
similarly to the studies by Rodrigues et al. (2014). The SPC values were converted to dry basis, as it follows:  

 

𝑆𝑃𝐶% =
100 𝑥 𝑆𝑃𝐶% 

100 − 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒%
 

Genotyping 
 
A leaf disk was sampled on a single plant at V4 stage of every RIL, and the DNA was extracted 

according to Dellaporta et al. (1983). After nucleic acid quantification by NanoDrop spectrophotometer, the 
DNA was diluted to 10 ng.µL-1 for SNP genotyping. SNPs located in proximity to SSRs, which were previously 
used in the BioAgro-UFV program for marker assisted SPC breeding, were chosen. Those polymorphic 
between PMQS12 and PMQS80 were selected to carry out this study (Table 1). The SNP genotyping 
followed the KASP methodology developed by Biosearch Technology (https://www.biosearchtech.com), 
and was performed using the Applied Biosciences 7500 equipment. The amplification reaction comprised 1 
cycle of 94 ºC for 15 minutes; 10 cycles of 94 ºC for 20 seconds, with a gradient of 61-55 ºC, decreasing 0.6 
ºC every 60 seconds; 30 cycles of 94 ºC for 20 seconds and 55 ºC for 60 seconds; and a 37 ºC cycle for 60 
seconds. Each reaction consisted of 2.5 µL of DNA at 10 ng.µL-1, 2.5 µL of 2x Master Mix and 0.14 µL of 
Primer Mix. Allelic discrimination was performed in the AB 7500 v. 2.3 software.   

 
Statistics 

 
From the phenotypic data, the individual and MET analyses were performed according to the 

following models: 
y = 𝜇 + Z1g + Z2b + 𝑒, [model 1 for individual analysis] 
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Table 1. Summary of SNP markers used for the association study based on the information available at 
https://www.soybase.org/. These SNPs are part of the SoySNP50K array (Song et al., 2013).  
 

SNP marker Chromosome Linkage 

group 

Position (bp)1 SNP 

alleles2 

Close QTLs Previous 

researches 

ss715630650 (56)          18    G 41887139 

(41887079-41887199) 

G/A Seed protein 26-8 

 

Reinprecht 

et al. (2006), 

Rodrigues et 

al. (2010). 

ss715636852 (62)          20     I 1897580 

(1897519-1897640) 

A/G Seedprotein 3-12 

Seedprotein 10-1 

 

Brummer et 

al. (1997), 

Sebolt et al. 

(2000), 

Rodrigues et 

al. (2010). 

1Glycine max genome assembly version Glyma.Wm82.a2 (Gmax2.0) map version 4.0. 

2The former base at the left of the dash represents the predominant allele in the mapping populations. 

 
where 𝑦 is the vector of observed data within environment; 𝜇 is the mean;  𝑔 is the random effect of 
genotypes (RILs), g ~ NID (0, 𝜎𝑔

2), where 𝜎𝑔
2 is the genetic variance; b is the random vector of blocks, b ~ NID 

(0, 𝜎𝑏
2), where 𝜎𝑏

2 is the block variance. 𝑍1and 𝑍2 are the design matrices for 𝑔 and 𝑏, respectively; and 
 

𝑦 =  𝜇 +  𝑋𝑡 + 𝑍1𝑔 + 𝑍2𝑔𝑒 + 𝑒,  [model 2 for MET analysis] 
 

where 𝑦 is the vector of observed data for the t trials; 𝜇 is the mean; 𝑡 is the fixed vector of trials;  𝑔 is the 
random effect of genotypes (RILs), g ~ NID (0, 𝜎𝑔

2), where 𝜎𝑔
2 is the genetic variance; 𝑔𝑒 is the random 

effect of genotype by environment interaction, ge ~ NID (0, 𝜎𝑔𝑒
2 ), where 𝜎𝑔𝑒

2  is the variance of genotype by 

environment interaction; and 𝑒 is the random vector of residuals, 𝑒 ~ NID (0, 𝜎2), where 𝜎2 is the residual 
variance. 𝑋, 𝑍1and 𝑍2 are the design matrices for 𝑡, 𝑔 and 𝑔𝑒, respectively. From both models, broad sense 

heritability was assessed as ℎ𝑔
2 =  1 −

𝑣̅𝐵𝐿𝑈𝑃

2𝜎̂𝑔
2 , where 𝑣̅𝐵𝐿𝑈𝑃  is the average variance of pairwise differences 

between the best linear unbiased predictions (BLUPs) of  𝑔 effects.  SPC generated from RILs, parent 
material and checks were compared. The marker analysis was based on the single-marker association 
(Schuster & Cruz, 2008) through the following linear regression model: 

 
𝑦𝑗 = 𝛽0 + 𝛽1𝑋1𝑗 + 𝜀𝑗 , 

 
where 𝑦𝑗 is the predicted mean for the genotype 𝑗 from individual and MET data (models 1 and 2); 𝛽0 is the 

intercept of regression or the mean, 𝛽1 is the marker additive effect, and 𝜀𝑗  is the random vector or 

residuals. 𝑋1𝑗 is the design matrix for coding genotypes as 𝐴1𝐴1 = 2, 𝐴1𝐴2 = 1, 𝐴2𝐴2 = 0. The coefficient 

of determination (𝑟2) obtained from the regression analysis denotes the proportion of the SPC variance due 
to SNP. The additive effect (𝑎) of an associated marker was obtained as the difference between the average 
of the individuals with the favorable allele and the average of the individuals with the unfavorable allele. 
The genetic effects were tested by the Likelihood Ratio Test (LRT; Rao, 1973) and the normal distribution of 
the data was verified through Lilliefors test (Razali & Wah, 2011). The precision of the experiments was 
assessed in concordance with Rodrigues et al. (2010), by using the coefficient of variation, presented in 
percentages, as it follows: 

 

𝐶𝑉% =
𝜎

𝑌𝑖̅
. 100, 

 
where 𝜎 represents the standard deviation of residuals for each experiment, and 𝑌𝑖̅ as the average 
calculated from the observed values for single-environment analyses or average from the predicted genetic 

https://soybase.org/gb2/gbrowse/gmax2.0/?name=Gm18:41887079..41887199
https://soybase.org/gb2/gbrowse/gmax2.0/?name=Gm18:41887079..41887199
https://soybase.org/sbt/search/search_results.php?category=QTLName&search_term=Seed+protein+26-8
https://soybase.org/gb2/gbrowse/gmax2.0?name=ss715636852%3A-5000..5000;dbid=soysnp50k;l=soysnp50k%1Esoybean_map_version_4_0%1Egene_models_wm82_a2_v1%1Egene_models_wm82_a1_v1_1%1Epublished_genes%1Epericentromere%3Aoverview;h_feat=ss715636852%40yellow
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values from multi-environment analysis. The statistical analysis were performed at GENES (Cruz, 2013) and 
R (R Core Team, 2019) softwares. 
 

RESULTS AND DISCUSSION 
 
Soybean SPC field data 

 

Figure 1 shows that SPC followed a normal distribution for all single-environment and MET analyses 
(p>0.05), presenting frequencies of the data according to the expected pattern for a quantitative inherited 
trait. The occurrence of genotypes with SPC values above 50% and below 40%  was observed. However, the 
RILs average SPC are barely the same as their parent material. Cap1 and Cap2 presented the highest values 
for protein overall, being 47.80 and 47.60% respectively. In order to compare the environments, the SPC 
means of 10% superior RILs were 52.84, 51.49, 49.39, 48.63, and 47.84% for Cap 1, Cap2, Vic1, Vic2 and 
MET dada, respectively. Cap1 also presented the highest frequency (18.18%) of transgressive RILs above 
50% of SPC, in contrary to Vic2 and MET data that presented 1.13 and 0%. 

The means of parent lines and RILs outperformed the checks in all trials, as previously expected. The LRT 
analysis showed significant differences (p<0.01) for the variance component of genotype effect (𝜎̂𝑔

2) for 

both single environment and MET data (Table 2). The broad sense heritability values were similar and 
ranged from 70.79 to 76.82% for individual trial data, with the superior and inferior estimates for Vic1 and 
Cap2, respectively. For the MET analysis, broad heritability estimate was moderate, corresponding to 53%. 
All 𝐶𝑉% values were below 10% for all field trials, similar to the results obtained by Rodrigues et al. (2010) in 
a study of QTL mapping for seed protein content in soybean.   

The data analyses denote a good field data quality, and reveal a satisfactory precision in terms of 𝐶𝑉%  
and normality of data, as well as in the findings by Rodrigues et al. (2010) and Rodrigues et al. (2014). The 
F5-derived RILs population used in this study had enough recombination cycles that resulted in transgressive 
genotypes for both superior and inferior SPC means, especially towards superior ones for Capinópolis 
location. Genotypes with SPC means above 50% were more frequent in Cap1 and Cap2 environments. 
Viçosa and Capinópolis experimental sites contrast in terms of weather conditions. Capinópolis is warmer 
especially during soybean growing season and SPC is favored by elevated temperatures. This same fact has 
been addressed by Piper and Boote (1999) and Patil et al. (2017), where they revealed increases in soybean 
SPC under elevated temperatures. The weather data from these locations can be downloaded as above-
mentioned in the materials and methods section.  

In Vic2, the SPC transgressive segregation range observed in our research surpassed the one by Zhang et 
al. (2015), which ranged from 35.89% to 49.10%, irrespective to the fact of one more recombination cycle in 
the NJRSXG population of F6-derived RILs in their study. The same remark is done when comparing to the 
study from Rodrigues et al. (2010), where SPC varied from 32.2% to 44.5%. Despite the use of contrasting 
SPC parent lines, Rodrigues et al. (2010) evaluated a F2:3 soybean population, in which the lack of 
recombination cycles may have costed the appearances of more transgressive genotypes. Thus, the 
superior transgressive genotypes means of this study suggest that PMQS12 x PMQS80 F5-derived RILs 
population is an elite germplasm for SPC selection. Furthermore, checks were outperformed in an average 
of 5.40% in all trial scenarios, which is inferior to the results reported by Warrington et al. (2015), where F5-
derived RILs mapping population exceeded the cultivars in a rate of 7.50% for SPC. 

The three checks used in the present study are modern cultivars widely adopted by soybean growers in 
Brazil and correspond to a diverse range of maturity group. Their SPC estimates bellow to the ones from 
RILs population are due to the plant improvement process that prioritized higher yields and may have lost 
favorable alleles for SPC through breeding. The genetic correlation between SPC and yield was -0.58 in the 
research by Kwon and Torrie (1964). Likewise, Yesudas et al. (2013) reported a positive correlation between 
yield and SOC, and a negative correlation between yield and SPC. SOC means were assessed and will be 
mentioned briefly in the next section.  

Genetic variation is responsible for the largest portion of the phenotypic variance in the population, and 
the significant variance estimate for genotype by environment interaction depicts the changes in 
performance of genotypes in terms of SPC depending on the environment (Table 2). All SPC broad sense 
heritability estimates were lower than the ones presented by Patil et al. (2018). In their research, SPC data 
from four environments were presented and the broad sense heritability values were around 90%. Instead, 
our individual trial means and broad sense heritability results are similar to the ones presented by Zhang et 
al. (2015) and fits perfectly to those from Hwang et al. (2014) that associated molecular markers with 
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soybean quality traits, including SPC. Our MET analysis delivered lower broad sense heritability estimates 
than the ones from single analyses, exactly the contrary as Zhang et al. (2015) reported in the MET data. In 
the present study, the genotype by environment interaction consumes the overall genetic variance and 
results in decreases in broad sense heritability, as described by Kang (1997).  

1. Seed protein content (SPC) distribution for single-environment data (Vic1, Vic2, Cap1, and Cap2) and 
multi-environment data (MET). 

 

SNP marker association 
 

The two markers tested in this association study showed their usefulness for increasing SPC in most of the 
studied environments (Table 3). The SNP marker ss715630650 was significantly associated with SPC in Vic1 
and Cap1 environments. However, ss715636852 was associated in Cap1, Cap2 and Vic1 environments, and 
MET data. The total variation in SPC explained individually by these markers ranged from 1.65% 
(ss715630650) to 6.11% (ss715636852). The direct contribution of the additive effect of these markers to 
the SPC the additive effect varied from 0.74% to 1.30%, which corresponds to 1.54 and 2.77% of the overall 
SPC mean for ss715630650 and ss715636852, respectively. The only cases in which the two markers had 
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significant influence over SPC was at Vic1 and Cap1 environments. The simultaneous additive effect of the 
favorable alleles of these markers over SPC in Vic1 and Cap1 were similar and accounted for 2.01% and                                                                                                                                                                                                                                                                                                                    
2.04, respectively.  

 

Table 2. Mean, statistics and heritability of seed protein content (SPC) of F5-derived RILs obtained from a 
single cross between PMQS80 and PMQS12, analyzed through single-environment (Vic1, Vic2, Cap1, and 
Cap2) and multi-environment (MET) approaches. Ranges are included inside parenthesis.  

 

  SPC% mean and standard deviation       

Environment Parent lines1 Checks2 RILs 𝝈̂𝒈
𝟐  𝝈̂𝒈𝒆

𝟐  𝐂𝐕% 𝒉𝒈
𝟐  3 

Vic1 45.34 ± 1.94 39.93 ± 2.51 45.10 ± 2.79 4.88** - 3.80 76.82 

   
(38.94 - 51.46)  

  
Vic2 41.24 ± 4.02 36.41 ± 3.83 42.10 ± 3.25 9.22** - 5.40 76.16 

   
(34.93 - 52.63)  

  
Cap1 47.45 ± 1.81 43.39 ± 1.46 47.80 ± 2.94  5.43** - 3.76 75.75 

   
(41.53 - 54.78)  

  
Cap2 47.16 ± 2.20 40.9 ± 1.37 47.6 ± 2.49 3.50** - 3.42 70.79 

   
(42.67 - 53.40)  

  
MET 45.27 ± 0.76 40.66 ± 1.28 45.7 ± 1.29 3.42** 2.95** 5.55 53.00 

   
(39.48 - 48.83)      

1Average between PMQS12 and PMQS80 means. 
2Average between ANSC83022, M7739 and M8372 means.  
3Broad sense heritability in % basis. 
 𝜎̂𝑔

2 - variance component for genotypic effect. 

𝜎̂𝑔𝑒
2  - variance component for genotype by environment interaction 

** Significant at p≤0.01. 

 

Table 4 presents the genotypes with superior and inferior SPC means when applying 2% of selection 
intensity, as well as their respective the alleles for ss715630650 and ss715636852. Among the selected 
genotypes from each environment, eight appeared at least in two environments. The RIL 78-43 was 
selected at Vic1, Cap2 and MET data. Out of the five superior selected genotypes in each data set, at least 
four of them had the favorable allele for ss715636852.  

In Cap1, all of the genotypes had that superior allele. Among the lower ones, the unfavorable allele 
(guanine) appearances became more frequent. For Vic1 and Cap1, where the marker ss715630650 was 
associated, the unfavorable allele (guanine) was present regardless the magnitude of the means. However, 
not all the superior genotypes presented the two favorable alleles, in which the absence of ss715630650 
was remarkable. 

Although this research involves a very low amount of associated markers, it is possible to observe the 
importance of the complementarity of parents to result in high SPC populations. The favorable alleles of 
ss715630650 and ss715636852 were donated by PMQS12 and PMQS80, respectively.  Parent lines that 
donated favorable alleles with higher effects over SPC than the ones addressed in this study were used by 
Warrington et al. (2015). In their research, Danbaekkong was the parent line that contributed with most of 
the favorable alleles. This line accounted for 55% of SPC variation and was able to increment 13.64% of SPC 
in terms of additive effect. The QTL responsible to for this occurrence is qProt_Gm20 at chromosome 20, 
located at least 35 Mbp apart of ss715636852. The relevance of chromosome 20 in soybean seed content 
traits is once again highlighted by this research, as well as described by Patil et al. (2018), who mapped 
haplotypes in the region comprised between 28.5 and 33.5 Mbp of chromosome 20, being considered a 
hotspot for protein content. This interval overlaps haplotypes identified in the QTL mapping and genome 
wide association studies by  Bolon et al. (2010),  Hwang et al. (2014), Vaughn et al. (2014), and Bandillo et 
al. (2015). 
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Table 3. SNP marker association estimates for seed protein content (SPC) obtained through the single 
marker analysis for single-environment (Vic1, Vic2, Cap1, and Cap2) and multi-environment (MET) 
approaches.  
 
SNP Environment p-value 𝒓%

𝟐 1 𝒂2 Allele3 Source4 

ss715630650 

Vic1 0.012* 2.47 0.76 

     A  PMQS12  

Vic2 1.000 0.39 0.50 

Cap1 0.043* 1.65 0.74 

Cap2 1.000 0.11 0.13 

MET 0.100 1.08 0.33 

ss715636852  

Vic1 0.001** 4.11 1.25 

     A  PMQS80   

Vic2 0.185 0.73 0.77 

Cap1 0.001** 4.15 1.30 

Cap2 0.001** 6.11 1.19 

MET 0.004** 4.98 0.86 

1Coefficient of determination: proportion of RILs population means due to the SNP contribution. 
2Additive effect of SNP marker over SPC%. 
3Favorable allele that leads to the increase of SPC% [A: adenine; G: guanine; T: thymine; C: cytosine]. 
4Parent line source of favorable allele.  
* ** Significant at p≤0.05 and p≤0.01.  

 

Nonetheless, the stability of 𝑟%
2  and 𝑎 estimates throughout the environments and MET data suggests 

that a special attention should be given to ss715636852 for its consistent results. In environments where 
the two SNPs had significant association, the increment in SPC was greater than in the presence of either 
one of them alone. From that, we can infer that ss715630650 and ss715636852 may have distinct functions 
in the SPC metabolic pathway. Therefore, the marker association study to SPC should be performed 
previously in order to discard markers that show redundant contributions to the trait.  

The lack of association of any marker to Vic2 environment can be assigned to the sowing date in late 
December 2018, in contrast to the sowing in early October for the other environments. Then, the genotype 
by environment interaction can lead to differential response of genes and its respective markers to sowing 
date.  

The minor effect of ss715630650 can be verified in the Table 4, where its favorable allele at Vic1 and Cap1 
was present at the inferior genotypes but absent in the superior ones. Zhang et al. (2015) also obtained 
high SPC progenies with minor effect favorable alleles when compared to other progenies in the 
population. This fact is justified by the interaction of the associated markers with the environment, as well 
as the performance of other markers associated to SPC, including those with irrelevant effect. That is to say, 
the additive effect of each associated marker can change according to different environments. Then, the 
changes in ranking genotypes according to SPC means and the lack of association of specific markers for 
some of the environments confirms an interaction between RILs with environments (significant 𝜎̂𝑔𝑒

2  

estimates, Table 2), and suggests the interaction of the SPC associated markers with environments. Patil et 
al. (2018) justified a similar fact in their study due to the complex nature of a quantitative trait, in which its 
interaction with the environment implies instability of QTLs controlling soybean seed composition. 

The top ranked RILs for SPC that carried favorable alleles had about 4% less SOC than the checks. In 
addition, the ones that had no favorable allele for SPC had about 2% less SOC. It can be considered that 
ss715630650 and mainly ss715636852 are not to recommended simultaneous selection as suggested by 
Singh (2017) and Li et al. (2017). Hence, for breeding programs seeking to increase soybean SPC and SOC 
simultaneously, ss715630650 and ss715636852 are not recommended. 

The co-segregation and complexity in separating high SPC from low SOC evidence the effects of major 
pleiotropic genes (Hwang et al., 2014; Wang et al., 2014; Patil et al., 2018). However, it is possible to 
achieve a range of 41-43% and 20-22% for SPC and SOC respectively, especially in cases where the genes 
coding for each trait are tightly linked (Zhang et al., 2018). In such case, the recombination cycles for 
obtaining RILs, as well as further marker association studies are essential in identifying favorable alleles that 
can ease the breeding process. Beyond those values, pleotropic genes play a large role over these traits 
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hampering the simultaneous selection. It reinforces the fact that simultaneous selection for both traits is 
complex and limited to specific situations (Zhang et al., 2018). 

 
Table 4. Seed protein content (SPC) means of transgressive genotypes under 2% of selection intensity for 
single-environment (Vic1, Cap1, and Cap2) and multi-environment (MET) data. The environment V2 is 
absent due to lack of significant marker association. The colored cells represent the favorable allele for 
increasing SPC (A: adenine, G: guanine). The blank cells represent the lack of association between marker 
and SPC at the environment. The superior genotypes are presented in the first five rows, and the inferior 
ones in the last five rows. 

 
Among the 264 RILs, the RIL 84-13 was considered an elite genotype once it presented a good field 

performance for SPC (53.78, 49.01, 47.56, 46.61, and 46.33% for Cap1, Cap2, Vic1, Vic2, and MET, 
respectively) and can serve as parent material to be destined to crosses for obtaining transgressive lines. In 
contrary, the remaining SPC lines containing both favorable alleles must undergo to a pre-breeding process 
to become more adapted to possess the essential agronomic traits. Similarly, ss715636852 must have its 
immediate use recommended in soybean breeding programs for increasing SPC. This marker can contribute 
to higher genetic gains.  

 

CONCLUSIONS 
 

This work was useful for the association of markers that have impact on SPC and for the identification of 
superior RILs. The significant association of ss715636852 and its additive effect contribute to incrementing 
SPC in the process of marker-assisted breeding. On the other hand, the use of ss715630650 did not result in 
statistically detectable increment in SPC. The results showed the differential performance of genotypes in 

Vic1 

 

Cap1 

RIL #  SPC% ss715630650 ss715636852   RIL #  SPC% ss715630650 ss715636852 

64-25 51.46 A A 

 

63-36 54.78 A A 

81-20 51.21 G A 

 

61-20 54.14 A A 

78-38 51.10 A G 

 

61-18 54.12 G A 

78-43 50.63 A A 

 

84-13 53.79 A A 

64-02 50.24 G A 

 

81-20 53.78 G A 

84-19 39.83 G G 

 

63-07 41.53 A A 

78-30 39.63 A G 

 

78-24 41.72 G A 

63-08 39.52 G A 

 

78-48 42.09 A A 

83-21 39.37 G A 

 

64-08 42.36 A A 

83-20 38.94 A A   78-36 42.55 G G 

Cap2 

 

MET 

RIL #  SPC% ss715630650 ss715636852 

 

RIL #  SPC% ss715630650 ss715636852 

61-30 53.40   A 

 

61-30 48.84   A 

84-17 53.19 

 

A 

 

61-01 48.81 

 

A 

78-43 52.99 

 

A 

 

78-43 48.73 

 

A 

79-28 52.69 

 

G 

 

79-01 48.68 

 

A 

61-01 52.66 

 

A 

 

64-02 48.39 

 

A 

62-12 42.67 

 

G 

 

83-21 40.75 

 

A 

63-07 42.97 

 

A 

 

63-20 40.89 

 

A 

79-54 43.52 

 

G 

 

63-11 41.38 

 

G 

78-31 43.79 

 

G 

 

61-03 41.47 

 

A 

63-11 43.92   G   79-75 41.49   G 
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respect to the different environments, which hinder selection in breeding programs for SPC. This research 
do not intend to be dogmatic and recommends a previous association of ss715630650, ss715636852 or any 
other marker prior the marker assisted breeding process. Therefore, the use of ss715636852 was beneficial 
for increasing SPC. 
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